$$
\int_{0}^{\infty} \frac{\sin x}{x}=\frac{\pi}{2}
$$

The formula

$$
\int_{0}^{\infty} \frac{\sin x}{x}=\frac{\pi}{2}
$$

sometimes called a Dirichlet integral has drawn lots of attention. G.H. Hardy [2] has a note ranking various proofs of this formula. Later [3] he reconsidered his ranking and added a proof discovered by A. C. Dixon [1]. Hardy didn't know how to rank Dixon's proof using his criterion and assigned it a low ranking. I will assign it a high ranking. I like it a lot. This note will present Dixon's proof.

The convergence of $\int_{0}^{\infty} \frac{\sin x}{x}$ can be proved using the mean value theorem for integrals as stated in problem \#7, section 4.2 of Folland (it's also true if ϕ is decreasing):

$$
\left|\int_{B_{1}}^{B_{2}} \frac{\sin x}{x}\right| \leq \frac{1}{B_{1}}\left|\int_{B_{1}}^{c} \sin x\right|+\frac{1}{B_{2}}\left|\int_{c}^{B_{2}} \sin x\right| \leq 2\left(\frac{1}{B_{1}}+\frac{1}{B_{2}}\right) \rightarrow 0
$$

These are the steps that I will verify:

1. let

$$
\begin{align*}
& u_{n}=\int_{0}^{\frac{\pi}{2}} \sin 2 n x \cot x d x, \tag{1}\\
& v_{n}=\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 n x}{x} d x . \tag{2}
\end{align*}
$$

2. Using elementary arguments We will prove
(a)

$$
\lim _{n \rightarrow \infty} v_{n}=\int_{0}^{\infty} \frac{\sin x}{x}
$$

(b)

$$
u_{n}=\frac{\pi}{2} .
$$

(c)

$$
\lim _{n \rightarrow \infty}\left(u_{n}-v_{n}\right)=0
$$

Proof. (a) Let $t=2 n x$ and we see that $v_{n}=\int_{0}^{n \pi} \frac{\sin t}{t} d t \rightarrow \int_{0}^{\infty} \frac{\sin t}{t} d t$.
(b) We use some trigonometry. We will prove (b) by induction on n. We first notice

$$
u_{1}=\int_{0}^{\frac{\pi}{2}} \sin 2 x \cot x d x=\int_{0}^{\frac{\pi}{2}} 2 \cos ^{2} x d x=\int_{0}^{\frac{\pi}{2}}(\cos 2 x+1) d x=\frac{\pi}{2}
$$

The inductive step uses the following identities:

$$
\begin{align*}
\sin (2 n+2) x-\sin 2 n x & =2 \cos (2 n+1) x \sin x \tag{3}\\
2 \cos (2 n+1) x \cos x & =\cos (2 n+2) x+\cos (2 n x) \tag{4}
\end{align*}
$$

which are proved using

$$
\begin{align*}
& \sin (2 n+1 \pm 1) x= \pm \cos (2 n+1) x \sin x+\sin (2 n+1) x \cos x, \tag{5}\\
& \cos (2 n+1 \pm 1) x=\cos (2 n+1) x \cos x \mp \sin (2 n+1) x \sin x, \tag{6}
\end{align*}
$$

to show that

$$
u_{n+1}=u_{n}=\frac{\pi}{2} .
$$

(c) Finally we notice that $\frac{1}{x}-\cot x$ can be defined to be C^{1} at $x=0$ and hence we can integrate by parts

$$
v_{n}-u_{n}=\int_{0}^{\frac{\pi}{2}}\left(\frac{1}{x}-\cot x\right) \sin 2 n x d x=\left[-\frac{\cos 2 n x}{2 n}\left(\frac{1}{x}-\cot x\right)\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{\cos 2 n x}{2 n}\left(\frac{1}{x^{2}}-\csc ^{2} x\right) d x
$$

Each of these terms goes to 0 as $n \rightarrow \infty$. This result also follows from the Riemann-Lebesgue lemma.

I'll include here a proof in the spirit of Dixon's proof, although it is not his proof. I'll make use of Theorem 1. (Riemann-Lebesgue Lemma). Suppose f is Riemann integrable on $[a, b]$. Then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin n x d x=0
$$

In this statement $\sin n x$ can be replaced by $\cos n x$ or $e^{ \pm i n x}$.
We next state a useful identity

Proposition 1.

$$
1+2 \cos 2 y+2 \cos 4 y+\cdots+2 \cos 2 n y=\frac{\sin (2 n+1) y}{\sin y} .
$$

This follows from the following string of identities:

$$
\begin{aligned}
e^{-i n x}+e^{-i(n-1) x}+\cdots+1+e^{i x}+\cdots+e^{i n x} & =e^{-i n x} \frac{e^{i(n+1 / 2)}\left(e^{i(n+1 / 2) x}-e^{-i(n+1 / 2) x}\right)}{e^{i x / 2}\left(e^{i x / 2}-e^{-i x / 2}\right)} \\
& =\frac{\sin (n+1 / 2) x}{\sin x / 2}
\end{aligned}
$$

From the proposition it follows that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n+1) y}{\sin y} d y=\frac{\pi}{2}
$$

It is also true that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n+1) y}{y} d y=\int_{0}^{\frac{(2 n+1) \pi}{2}} \frac{\sin t}{t} d t \rightarrow \int_{0}^{\infty} \frac{\sin t}{t} d t
$$

The Riemann-Lebesgue lemma implies

$$
\int_{0}^{\frac{\pi}{2}}\left(\frac{1}{y}-\frac{1}{\sin y}\right) \sin ((2 n+1) y) d y, \rightarrow 0
$$

and that concludes the proof.

References

[1] Dixon, A. C., Proof That $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, The Mathematical Gazette, Vol. 6, No. 96 (Jan., 1912), pp. 223-224.
[2] Hardy, G. H. , The Integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$, The Mathematical Gazette, Vol. 5, No. 80 (Jun. - Jul., 1909), pp. 98-103.
[3] Hardy, G. H., Further Remarks on the Integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$, The Mathematical Gazette, Vol. 8, No. 124 (Jul., 1916), pp. 301-303.

